Teacher notes Topic A

Two simple derivations of centripetal acceleration.

At time zero the velocity vector is shown by the blue arrow. A short time Δt later the velocity vector has changed direction and is shown by the green arrow.

Derivation 1

From $\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$ we get $\Delta \vec{v} = \vec{a} \Delta t$ and hence $|\Delta \vec{v}| = |\vec{a}| \Delta t$.

From the figure above $|\Delta \vec{v}| = 2v \sin \frac{\Delta \theta}{2}$; when $\Delta \theta$ is very small $|\Delta \vec{v}| \approx v \Delta \theta$.

But
$$\Delta \theta = \omega \Delta t$$
 with $\omega = \frac{v}{R}$ and so $|\Delta \vec{v}| = v \frac{v}{R} \Delta t = \frac{v^2}{R} \Delta t$.

Hence

$$\left|\Delta \vec{v}\right| = \frac{v^2}{R} \Delta t = \left|\vec{a}\right| \Delta t$$

From which follows

$$\left|\vec{a}\right| = \frac{v^2}{R}$$

IB Physics: K.A. Tsokos

Derivation 2

From $\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$ we get $\Delta \vec{v} = \vec{a} \Delta t$ and hence $|\Delta \vec{v}| = |\vec{a}| \Delta t$. In the figure the length of each arrow represents $|\Delta \vec{v}|$. This figure is made of many copies of the small diagram on the right in the figure above.

Summing over all arrows we get $\sum |\Delta \vec{v}| = \sum |\vec{a}| \Delta t$.

When $\Delta \theta$ is very small, the $|\Delta \vec{v}|$ is the same as the length of an arc of a circle of radius v. As we sum over the entire circle the sum will give the circumference of this circle which is $\sum |\Delta \vec{v}| = 2\pi v$. And $\sum |\vec{a}|\Delta t = |\vec{a}|T$ where T is the period. Thus

 $2\pi v = |\vec{a}|T$

But
$$T = \frac{2\pi R}{v}$$
 and so $2\pi v = |\vec{a}| \frac{2\pi R}{v}$

Hence $|\vec{a}| = \frac{v^2}{R}$.